School Rooftop Solar & Battery Storage 60 kW solar & 54 kWh battery Penelakut Tribe

The Team

Josh James Penelakut Tribe **Economic & Development**

Crystal Alcorn Penelakut Tribe **Climate Action Coordinator**

Project Coordinator

Mary Vasey **Barkley Project Group Development Lead**

Penelakut Tribe

Spune'luxutth community

- √ Hul'qumi'num speaking
- ✓ Penelakut Island
- √ >1,000 members

A.

Barkley Project Group

Specializes in renewable energy and community infrastructure for First Nations communities

Pre-Feasibility

Feasibility

Design

Construction

Operations & Maintenance

Pre-Feasibility Feasibility Financial analysis Community needs (potential \$/kWh and priorities savings) Potential resource Contractor report High level financial Demand vs. analysis production Technically Community & leadership support feasible Demand vs. Environmental/ production social impacts Funding/strategic Environmental risks plan

Operations & Design Construction Maintenance Procurement of Electrical/ Long-term O&M Mechanical contractor strategy Make/model/ final sizing of all Employees/ Installation components, financials codes Commissioning, Emergency Final design testing, handover planning **Permits** Monitoring

Community Energy Plan

Solar Project

Asset Management

Pre-Feasibility

Feasibility

Design

Construction

Operations & Maintenance

Community Energy Plan

Solar Project

Asset Management

Pre-Feasibility

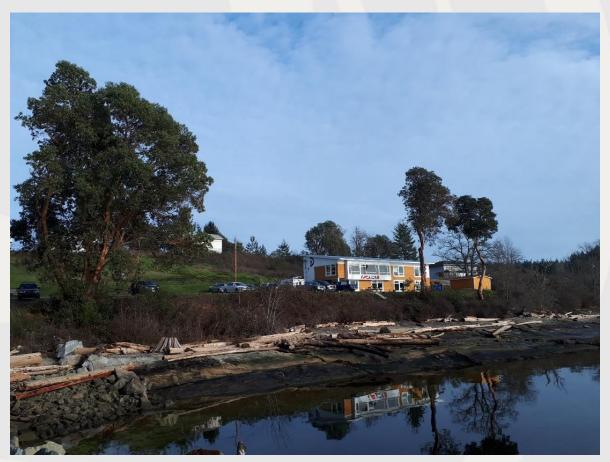
Feasibility

Design

Construction

Operations & Maintenance

- Community needs and priorities
- Potential resource
- Technical feasibility
- Environmental/cultural risks
- Financial analysis
- Funding/strategic plan


- Procurement of contractor
- System sizing and draft design
- Final design
- Permits
- Construction
- Electrical/ Mechanical
- Commissioning, testing, handover

- Monitoring
- M&V
- Maintenance

PRE-FEASIBILITY & FEASIBILITY

Community Energy Plan (2018-2019)

8

- ✓ Community engagement
- ✓ Leadership meetings
- ✓ Land Use Plan

✓ Comprehensive Community Plan



Reliability of electrical system

Fiscal Year	CI.	CHL.	SAIFI.	SAIDI.	CAIDI.	%ASAI
2017	2,371	7,923	14.0	46.9	3.3	99.465%
2018	1,638	6,167	9.7	36.5	3.8	99 583%
2019	1,477	27,789	8.7	164.4	18.8	98.123%
2020	346	1,552	2.0	9.2	4.5	99.895%
2021	1,267	3,330	7.5	19.7	2.6	99.775%

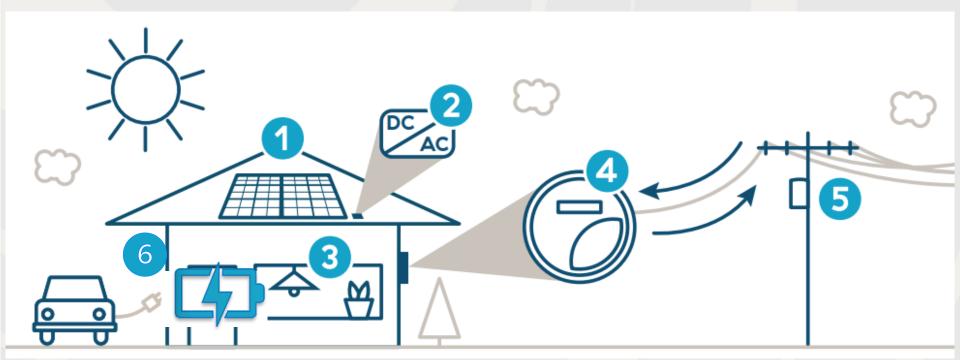
SAIDI: a measure of the amount of time, in hours, an average distribution customer is without power in a year

SAIFI: a measure of the number of sustained interruptions (longer than one minute) an average distribution customer will experience in a year

Data from BC Hydro: outage data per feeder

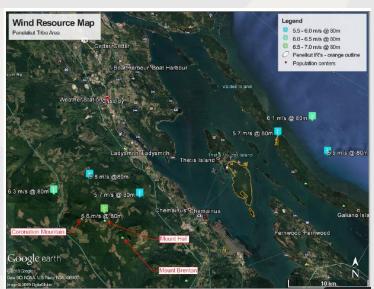
- High cost of community buildings operations: utilities, repairs, etc.
- Comfortable, safe gathering spaces (meetings, emergencies, other)
- Economic development

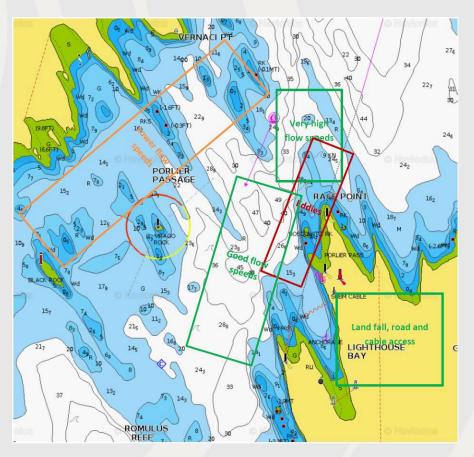
Pre-smart meter consumption data



Help

Net-metering with energy storage -

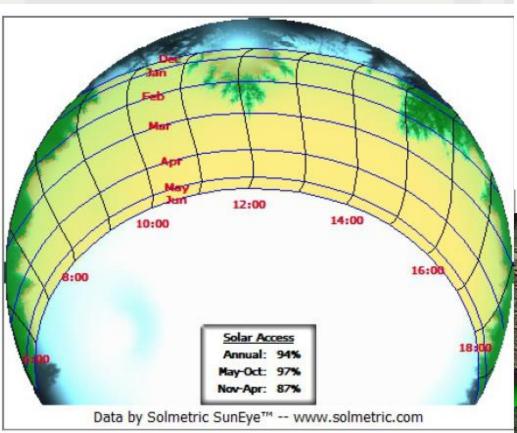

- Use electricity produced for the building's electrical load
- Send excess power back to **battery bank** and/or the grid
- √ 1:1 BC Hydro account credit (annual)
- ✓ Can access battery power during outage and recharge with solar

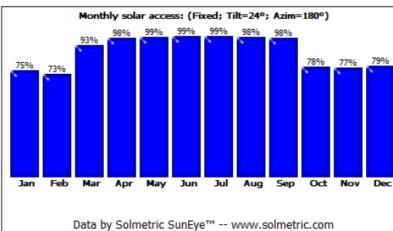


Potential Resource

Renewable opportunities considered:

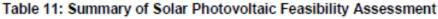
- Solar
- Wind
- Tidal
- Hydropower

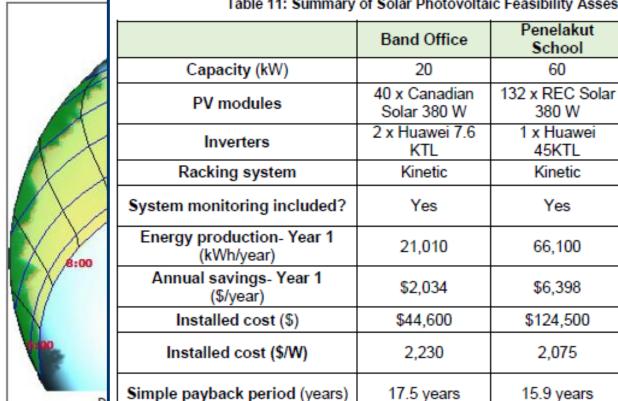


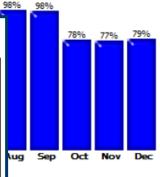


Potential Resource

Solar Detail






14 September 26, 2023

Potential Resource

Solar Detail

Monthly solar access: (Fixed; Tilt=24°; Azim=180°)

Health &

Education Center

15

132 x REC Solar

380 W

1 x Huawei 30KTL

Unirac

Yes

16,125

\$1,561

\$36,950

2,464

18.6 years

w.solmetric.com

15 September 26, 2023

Technical Feasibility

How do the proposed technologies match my specific needs for generation?

- ✓ Seasonal
- ✓ Daily
- ✓ End-use (heat / lighting /electricity)

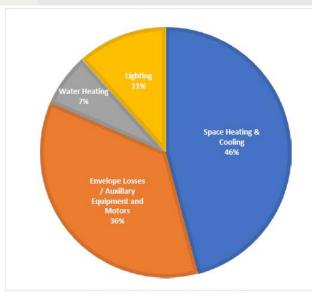


Figure 13: Commercial Energy Usage

Table 7: Commercial Building Current and Potential Energy Consumption

Consumption (kWh/year)	Current	After Upgrades	Savings
School	288,600	208,657	79,943
Day Care	31,967	16,879	15,088
TOTAL	320,567	225,536	95,031

Technical Feasibility

What are the operations and maintenance requirements and are they realistic?

- ✓ Day-to-day operations
- ✓ Annual maintenance
- ✓ Replacement costs
- ✓ Risk to operations of O&M delays*

Technical Feasibility

Is the technology a suitable solution?

✓ Appropriate "readiness" level for project scale and risk

- 7: Prototype ready for "real-world" demo
- 8: Actual technology completed & tested
- 9: Actual technology deployed & operational

https://ised-isde.canada.ca/site/innovative-solutions-canada/en/isc-technology-readiness-level-scale

Environmental & Cultural Risks

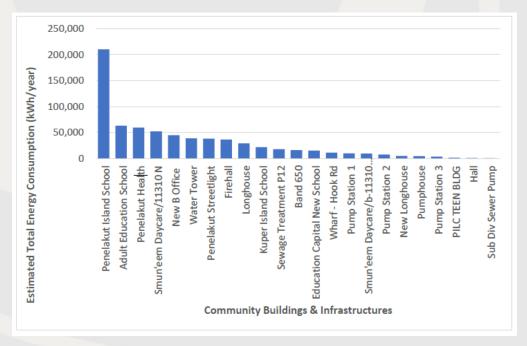
How will my project impact the environment? Are there permitting/regulatory components?

- √ "Valued Ecosystem Components"
- ✓ Traditional Ecological Knowledge
- ✓ Protected areas
- ✓ GHG emissions
- ✓ Mitigation requirements/options

Environmental & Cultural Risks

How will my community receive this project? Does it align with key priorities and needs?

- ✓ Identify key "authorities": administration, Chief and Council, Elders
- ✓ Identify end users
- ✓ Community support
- ✓ History of the area
- ✓ Review deliverables with key authorities


Financial Analysis

What are the best savings opportunities?

- Current costs
- Savings opportunities
- Rebates/grants/funding
- Payback periods

Table 7: Commercial Building Current and Potential Energy Consumption

Consumption (kWh/year)	Current	After Upgrades	Savings
School	288,600	208,657	79,943
Day Care	31,967	16,879	15,088
TOTAL	320,567	225,536	95,031

Funding / Strategic Plan

- Granting Programs
- Nation Investment

Supporting Docs

Capital cost

O&M strategy

Justification of project scope

Funding strategy

Timeline

Requirements/specs

Reporting

22

Funding / Strategic Plan

BC Indigenous Clean Energy Initiative (BCICEI)

Investing in Canada
Infrastructure ProgramClean BC Community Fund

Nation Contribution

Conclusion of CEP Pre-Feasibility

PIES Priorities:

- Solar
 - Reduce energy bills
 - Emergency preparedness
- Energy efficiency retrofits
 - GSHP recommissioning
 - Lighting

Homes:

- Energy efficiency retrofits
 - ICCP Program (BC Hydro)
 - Heat pumps
 - Insulation
 - Windows and doors
 - Ventilation

24

Community Energy Plan

Solar Project

Asset Management

Pre-Feasibility

Feasibility

Design

Construction

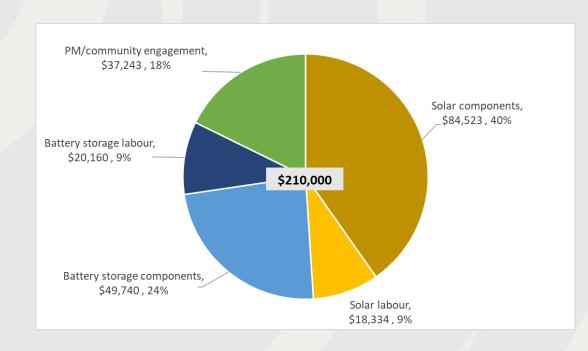
Operations & Maintenance

- Community needs and priorities
- Potential resource
- Technical feasibility
- Environmental/cultural risks
- Financial analysis
- Funding/strategic plan

- Procurement of contractor
- System sizing and draft design
- Final design
- Permits
- Construction
- Electrical/ Mechanical
- Commissioning, testing, handover

- Monitoring
- M&V
- Maintenance

Procurement of Contractor


- ✓ Invited RFP
- ✓ Reflects project and community needs

	Decision matrix					
	Scoring criteria	Scoring mechanism	Requirements	[Contractor]	[Contractor]	[Contractor]
	Design	Yes- green, No-Red	Site specific (consider parameters)			
	System monitoring	Yes- green, No-Red	Specsheet for system			
	Project schedule	Yes- green, No-Red	Ability to meet timeline			
ž	Safety	Yes- green, No-Red	Proper insurance, saftey work plan			
Mandatory	Train/hire members	Yes- green, No-Red	Budget and plan			
our.	Community engagement	Yes- green, No-Red	Budget and plan			
Š	Experience with solar PV	Yes- green, No-Red	Provide reference project			
	Cost panels and battery	Yes- green, No-Red	Budget for each			
	Experience with Indigenous projects	Yes- green, No-Red	Provide reference project			
	Panel efficiency	Yes- green, No-Red	Greater than 20% = green			
	Panel warranty- performance	Rank (stoplight)	10 yr= red 10-20 yr= yellow 20+ yr=green			
Warranty	Panel warranty -material	Rank (stoplight)	10 yr= red 10-20 yr= yellow 20+ yr=green			
Ta .	Battery warranty - performance	Rank (stoplight)	10 yr= red 10-20 yr= yellow 20+ yr=green			
۸a	Inverter warranty- performance	Rank (stoplight)	10 yr= red 10-20 yr= yellow 20+ yr=green			
	Warranty - workmanship	Rank (stoplight)	10 yr= red 10-20 yr= yellow 20+ yr=green			
5	Solar component cost/watt	Rank (stoplight)	Score weighted x5			
ete	Budget	Rank (stoplight)	Within given budget			
an an	Inverter to panel ratio	Rank (stoplight)	Panels>invert (kW) = green			
Assesed parameters	Battery capacity	Rank (stoplight)	Properly sized for given load			
pa	Battery cost/kwh	Rank (stoplight)	Score weighted x5			
Ses	Indigenous partners	Rank (stoplight)	Suggested by Nation, existing relationships,			
Ass	[Other]	Rank (stoplight)	Specific to project			
	Score			0	0	0
	Scoring (not weighted): Green=2, Yellow=1	!, Red=0	Y= 1 N=0			
	2	1				
	1	0				
	0					

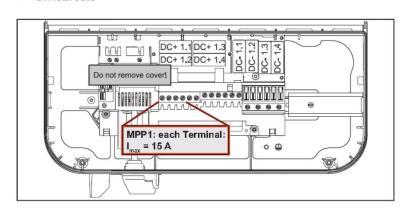
Procurement of Contractor

- ✓ Total Project Cost **\$210,000**
- ✓ Contractor Cost \$172,757
 - ✓ 49% solar
 - √ 11% labour
 - ✓ 29% battery
 - √ 12% battery labour

Procurement of Contractor

✓ Lifetime planning

ITEM	QUANTITY	STANDARD WARRANTY	EXTENDED WARRANTY	USEFUL LIFE
Fronius Primo 15.0 Inverter	3	10 years	20 years	15 years
Longi 455W Modules	126	25 years	-	30 years
Kinetic Racking System	1	20 years	-	30 years
S-5-S Standing Seam Clamps	357	Lifetime	-	Lifetime
Tesla Powerwall 2	4	10 years	-	10 years
Tesla Backup Gateway 2	1	10 years	-	10 years
250A Interconnection Breaker	1	1 year	-	25 years


Sizing & Draft Design

- ✓ Budget
- ✓ Net-metering simple/complex
- ✓ Roof size/suitability
- ✓ Critical panel sizing

The inverter is supplied as an option with the following fuses:

- 4x 15 A string fuses at DC+ input (MPPT1) and 4x metal bolts at DC- input
- 8x metal bolts

29

Emergency Shelter – Critical Panel Loads

√ Critical loads

- ✓ Stage 1: Solar & Powerwall
- Stage 2: Diesel generator
 - Range and heating

POWER ON

Normal Operating Conditions

- ✓ Grid: Connected
- ✓ Solar: Online to powerwall or grid (net-metering)
- ✓ Powerwall: Charging or feeding solar to system
- ✓ Generator: Off

Time: unlimited

- ✓ Communications/Server: on
- ✓ Heat: on all spaces
- ✓ Kitchen: on full operation
- ✓ Outlets: on all spaces
- ✓ Lights: on all spaces

POWER OUTAGE

(short-term) - Stage 1: Powerwall

- x Grid: Not connected
- ✓ **Solar:** Online to Powerwall
- ✓ Powerwall: Charging or feeding solar to system
- x Generator: Off

Time: limited to Powerwall capacity (increases with solar charging) OR power back on

- ✓ Communications/Server: on
- ✓ Heat: limited Crazv Raven's room
- ✓ Kitchen: limited some lighting, outlets (TBD)
- ✓ Gym: limited lighting (TBD)
- ✓ Outlets: limited kitchen/gym (TBD)
- ✓ **Lights**: limited west wing (TBD)

POWER OUTAGE (short-term) – Stage 2: Diesel

- x Grid: Not connected
- ✓ Solar: Online to Powerwall
- x Powerwall: Charging if solar/sun
- ✓ Generator: On

Time: limited to fuel capacity OR powerwall recharged by solar OR power back on

- x Communication/Server: off*
- ✓ Heat: limited TBD
- ✓ Kitchen: limited <u>dishwsher</u> (TBD)
- x **Gym:** no (TBD)
- ✓ Outlets: limited TBD
- ✓ Lights: limited TBD

Long-term: cycles between two stages as solar permits OR manually controlled operation of diesel

- *likely periods of no service
- *generator CANNOT charge powerwall

LOAD	QUANTITY	POWER (W)	HOURS/DAY	kWh/DAY	
Server	1	160	24	3.8	
ISP Router	1	22	24	0.5	
Network Switch	4	289	24	6.9	
Reception Area Lighting	2	71	8	0.6	
Boy's Washroom Lighting	1	36	8	0.3	
Girl's Washroom Lighting	1	36	8	0.3	
Office Area Restroom Lighting	1	36	8	0.3	
Health Room Lighting	1	36	8	0.3	
Kitchen Lighting	2	71	8	0.6	
Gym Lighting	1	278	8	2.2	
Crazy Raven's Lighting	1	36	8	0.3	
Outdoor Lighting	13	361	8	2.9	
Crazy Raven's Outlets	1	278	8	2.2	
Kitchen Outlets	1	278	8	2.2	
Reception Area Outlets	1	278	8	2.2	
Principal's Office Outlets	1	278	8	2.2	
Outside Roadside Outlet	1	278	8	2.2	
Main Entrance Hall Outlet	1	278	8	2.2	
Electrical Room Outlet	1	278	8	2.2	
Public Address System	1	278	8	2.2	
Outdoor Siren	3	50	24	1.2	
Fire Alarm Annunciator	1	100	24	2.4	
Smokies	50	167	24	4.0	
Fire Alarm Bell	2	7	24	0.2	
Crazy Raven's Heat Pump	1	2222	4	8.9	
Crazy Raven's Microwave	1	778	2	1.6	
New Chest Freezer	1	222	24	0.8	
Older Frigidaire Chest					
Freezer	1	167	24	1.0	
TOTAL		8469		65.3	

Emergency Shelter – Critical Panel Loads

- ✓ Energy backups last up to 2 days on restricted use
- ✓ Diesel generator used for cooking, largescale heating

Final Design

- ✓ Site visit
- ✓ All parties involved
- ✓ Final design

Permits

- ✓ Technical Safety BC
- ✓ BC Hydro net-metering complex system
- ✓ Interconnection agreements

Inspection Details

ASSESS: EL: Final Inspection

INSPECTION STATUS	Passed
INSPECTION NUMBER	ELIN-3125622-2022
INSPECTION TYPE	ASSESS: EL: Final

33

Construction

- ✓ Training
 - ✓ Local Involvement
 - Online and hands-on

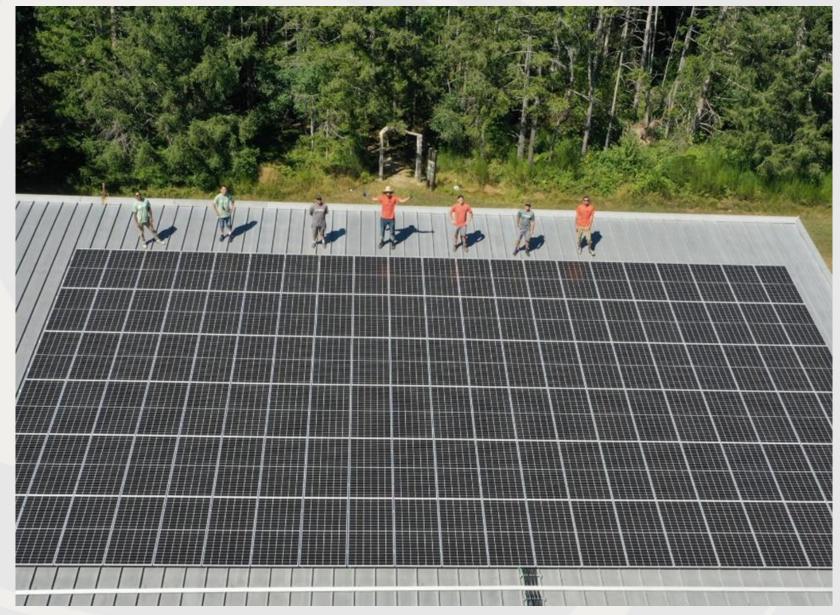
Construction

✓ Procurement

- Equipment, materials
- Transportation to site
- ✓ On-site storage

35

Construction


✓ Installation

- Panels
- Inverters
- Battery (plus future proofing)
- Remote monitoring system

Construction

✓ Installation

- Colour coding outlets
- Critical load panel install
- Diesel generator recommissioning
- Appliance upgrade recommendations
- ✓ In tandem with EE upgrades

39

Solar Celebration

40

Community Energy Plan

Solar Project

Asset Management

Pre-Feasibility

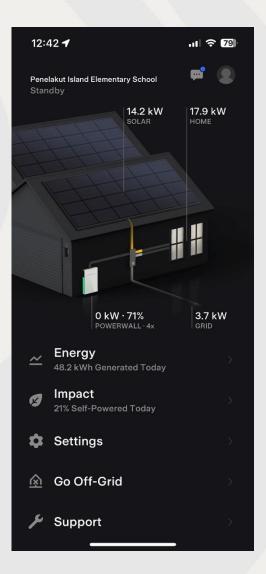
Feasibility

Design

Construction

Operations & Maintenance

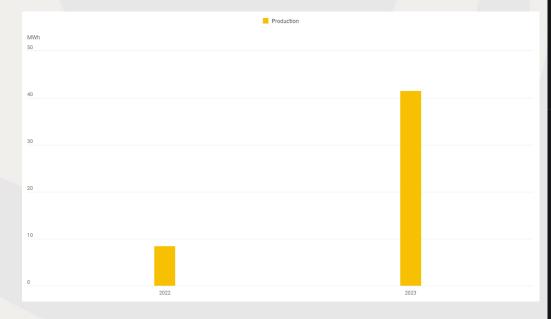
- Community needs and priorities
- Potential resource
- Technical feasibility
- Environmental/cultural risks
- Financial analysis
- Funding/strategic plan

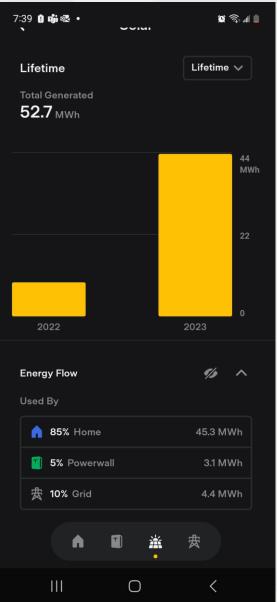

- Procurement of contractor
- System sizing and draft design
- Final design
- Permits
- Construction
- Electrical/ Mechanical
- Commissioning, testing, handover

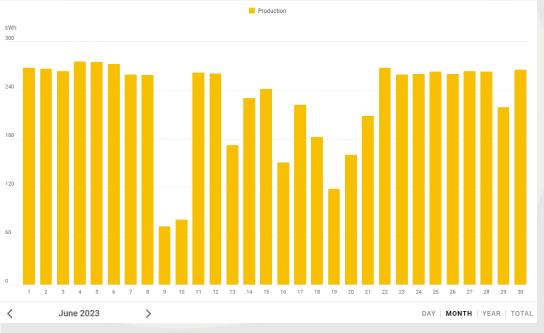
- Monitoring
- M&V
- Maintenance

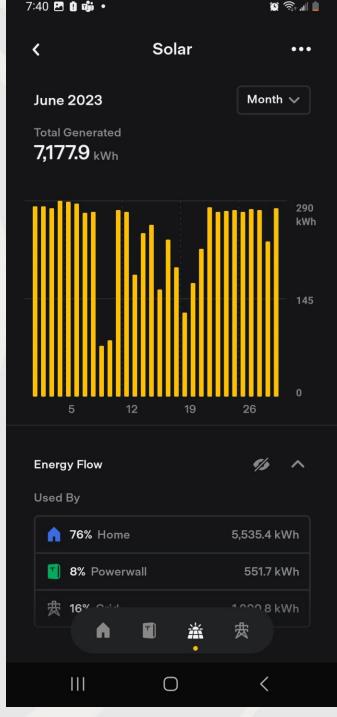
Monitoring

- ✓ Phone/ tablet apps
- Real time
- Charge and deployment of batteries

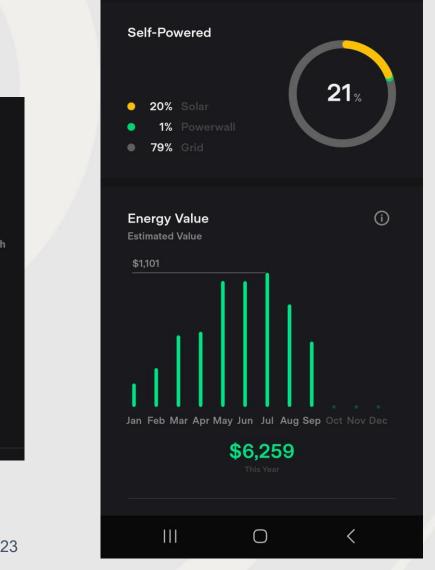

Measurement & Verification


- √ Estimated VS. actual performance
- √ My Hydro + remote monitoring system


✓ Lifetime production 52.7 MWh

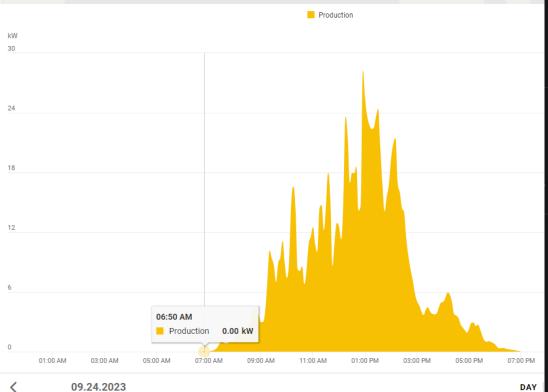


✓ June 2023 generation



√ Saved \$6K this year

7:41 🖪 🛭 🐝 •


Impact

© 🥋 ...II ੈ

Year

✓ Daily production in late summer

Mon Aug 28th Day 🗸 **Total Generated** 102.4 kWh 28 kW 6 AM 12 PM 6 PM **Energy Flow** Used By 90% Home 92.4 kWh 9% Powerwall 10.0 kWh 费 1% Grid 0.0 kWh 溢 贵 Ш

© 🤼 ...II 🗎

7:41 🛂 🛭 🐝 •

Maintenance

- ✓ Monitoring
- ✓ Cleaning
- ✓ Troubleshooting

49

Impacts

- √ Keep kids in school
- ✓ Emergency center
- ✓ Lower energy bills
- ✓ Increased capacity

Other CEP work

- ✓ ICCP stream 1
- √ Heat pumps & ventilation upgrades
- √ School LED lighting and **GSHP**

Next steps

- Energy efficiency upgrades to homes
- ✓ Solar PV system on the daycare

Thank you! – Questions?

